

Oscillator JOX254S(V) · (VC)OCXO

- oven controlled crystal oscillator (OCXO or VCOCXO)
- sinewave output, 25.4 mm x 25.4 mm
- superior frequency stability, best option ± 0.5 ppb
- wide temperature range up to -40 °C ~ +85 °C
- frequency control option available (VCOCXO)
- supply voltage options 3.3 V, 5.0 V (option 12.0 V)

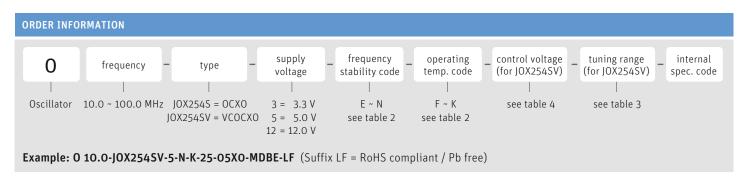
REACH

Conflict mineral free

GENERAL DATA (OVERVIEW OF OPTIONS) TYPE IOX254S / IOX254SV frequency range 10.0 ~ 100.0 MHz (see table 1) frequency at +25 °C (*1) ± 50 ppb / ± 100 ppb max. tolerance / temperature (*2) ± 0.5 ppb ~ ± 50 ppb, examples see table 2 stability supply voltage (*3) \pm 0.2 ppb ~ \pm 20 ppb max. (at $V_{pc} \pm 5\%$) load change (*4) \pm 0.2 ppb ~ \pm 20 ppb max (at nom load \pm 5%) aging first year (*5) ± 50 ppm ~ 300 ppb max. (at +25 °C) aging per day (*6) ± 0.5 ppb ~ 5.0 ppb max. (at +25 °C) up to -40 $^{\circ}$ C $^{\sim}$ +85 $^{\circ}$ C, see table 2 temperaoperating ture operable up to -40 °C ~ +85 °C storage -55 °C ~ +105 °C 3.3V (± 5 %) / 5.0V (± 5 %) / 12.0V (± 5 %) supply voltage V_{nc} steady current consumption 250 mA typ. / 400 mA max. (example) 650 mA typ. / 800 mA max. (example) warm-up current consumption warm-up time (*7) 5 minutes typ. output load nom. 50 Ω level min. 6 dBm harmonic suppression -30 dBc max. -40 dBc typ. spurious suppression -60 dBc max. -80 dBc typ. V_c frequ. tuning range JOX254SV ± 0.5 ppm min. ~ ± 2.5 ppm min. $1.65 \text{ V} \pm 1.65 \text{ V}$ at $\text{V}_{\text{DC}} = 3.3 \text{ V}$ V_c frequ. tuning voltage JOX254SV $2.50 \text{ V} \pm 2.50 \text{ V}$ at $\text{V}_{DC} = 5.0 \text{ V}$ $2.50 \text{ V} \pm 2.50 \text{ V}$ at $V_{DC} = 12.0 \text{ V}$ 100 kΩ input impedance of V_c min. V_c frequ. tuning linearity max. 10% phase noise at 10 Hz -125 dBc/Hz typ. at f_o = at 100 Hz -150 dBc/Hz typ. 10.0 MHz, at 1 KHz -155 dBc/Hz typ. $V_{DC} = 5.0V$ at 10 KHz -160 dBc/Hz typ.

-160 dBc/Hz typ.

TABLE 1: DEVELOPED FREQUENCIES						
all frequencies in MHz:	10.0	12.80	16.3840	19.20		
	20.0	38.40	40.0	100.0		

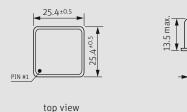

TABLE 2: FREQUENCY STABILITY CODE (EXAMPLES)						
frequency stabilitemperature cod	1	E ± 50 ppb	G ± 20 ppb	I ± 5.0 ppb	L ± 2.0 ppb	N ± 0.5 ppb
-10 °C ~ +70 °C	F	0	0	0	0	0
-20 °C ~ +70 °C	В	0	0	0	0	0
-30 °C ~ +85 °C	М	0	0	0	0	0
-40 °C ~ +70 °C	N	0	0	0	0	0
-40 °C ~ +85 °C	K	0	0	0	0	0

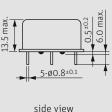
O = ask for availability or other frequency stability options

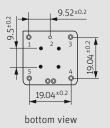
TABLE 3: VC DEPENDENT FREQUENCY TUNING RANGE CODING METHOD					
V _C frequency tuning range	code	minimal	maximal		
of JOX254	05X0	± 0.5 ppm	undefined		
options may not be	10X0	± 1.0 ppm	undefined		
available at all frequencies,	0510	± 0.5 ppm	± 1.0 ppm		
individually ask for other	0815	± 0.8 ppm	± 1.5 ppm		
options	0824	± 0.8 ppm	± 2.4 ppm		
	1525	± 1.5 ppm	± 2.5 ppm		
	25X0	± 2.5 ppm	undefined		

TABLE 4: VC CENTER VOLTAGE AND VC RANGE CODING METHOD					
V_c center voltage and V_c range	code	center and range of V_{c}	at supply		
	16	1.65 V ± 1.65 V	± 3.3 V		
	25	2.50 V ± 2.50 V	± 5.0 V		
	25	2.50 V ± 2.50 V	± 12.0 V		

Important Note: This generic datasheet can't show all available options. Therefore, please contact our sales team for specific options not shown in this datasheet. (*1) ~ (*7): Please refer to the examples for test conditions on page 2






at 100 KHz

Oscillator JOX254S(V) · OCXO & VCOCXO · PIN TYPE

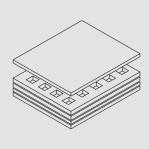
DIMENSIONS

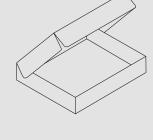
OCXO VCOCXO

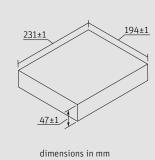
JOX254 JOX254V

1: output # 1: output

2: GND # 2: GND


3: NC # 3: V_{Control}


4: NC # 4: NC (option ref. voltage)


5: V_{DC} # 5: V_{DC}

pin connection in mm

PACKING

buffer material

cardboard - max. 20 pcs

PACKAGING NOTE

- typically supplied in a carton box
- a full carton box contains 20 pcs.

NOTE

- for best supply noise rejection, connect a capacitor of 100 nF and a second capacitor of 10 μF closely to the supply voltage pins
- a separate voltage supply rail ensures the best phase noise

TEST CONDITIONS (EXAMPLES)

- *1: Measured frequency after 15 minutes of operation, observed with $T_A = +25$ °C \pm 1 °C, at nominal V_{DC} , the nominal load and nominal center V_{CC} (if applicable) and within 30 days after ex-factory. The measured frequency is referenced to the specified nominal frequency.
- *2: T_A varied in the specified operating temperature range. The frequency variation is normalized to $f_{ref} = (f_{max} + f_{min})/2$, at nominal V_{DC} and nominal center V_C (if applicable), and at nominal output load, temperature variable speed less than 2 °C per minute.
- *3: Frequency variation if V_{DC} is varied by \pm 5% of nominal V_{DC} , frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), $T_{A} = +25$ °C and nominal load.
- *4: Frequency variation if the load is varied by ± 5 % of nominal load, frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), $T_{A} = +25$ °C and nominal load.
- *5: Long-term maximum frequency deviation at T_A = +25 °C ±1 °C over the specified time, referred to the ex-factory status at constant T_A , nominal V_{DC} , and nominal V_C (if applicable). The frequency reference is determined at T_A = +25 °C, at nominal V_D , nominal center V_C (if applicable), nominal load and 30 days of operation. Normally, the largest frequency deviation occurs within the 1st year.
- *6: Maximum frequency deviation within 24 hours in a steady state. The initial status acquired at T_A = +25 °C, at nominal V_{DC} , nominal center V_C (if applicable), nominal load and after 30 days of continuous operation.
- *7: Time until the maximum frequency deviation is less than a specified value, referred to the final frequency. This final frequency is acquired after 1h of continuous operation at $T_A = +25$ °C, at nominal V_{DC} , nominal center V_C (if applicable) and nominal load.

